Essential Tensor Learning for Multi-View Spectral Clustering

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integration of Single-view Graphs with Diffusion of Tensor Product Graphs for Multi-view Spectral Clustering

Multi-view clustering takes diversity of multiple views (representations) into consideration. Multiple views may be obtained from various sources or different feature subsets and often provide complementary information to each other. In this paper, we propose a novel graph-based approach to integrate multiple representations to improve clustering performance. While original graphs have been wid...

متن کامل

Co-regularized Multi-view Spectral Clustering

In many clustering problems, we have access to multiple views of the data each of which could be individually used for clustering. Exploiting information from multiple views, one can hope to find a clustering that is more accurate than the ones obtained using the individual views. Often these different views admit same underlying clustering of the data, so we can approach this problem by lookin...

متن کامل

Multi-view Self-Paced Learning for Clustering

Exploiting the information from multiple views can improve clustering accuracy. However, most existing multi-view clustering algorithms are nonconvex and are thus prone to becoming stuck into bad local minima, especially when there are outliers and missing data. To overcome this problem, we present a new multi-view self-paced learning (MSPL) algorithm for clustering, that learns the multi-view ...

متن کامل

Multi-objective Multi-view Spectral Clustering via Pareto Optimization

Traditionally, spectral clustering is limited to a single objective: finding the normalized min-cut of a single graph. However, many real-world datasets, such as scientific data (fMRI scans of different individuals), social data (different types of connections between people), web data (multi-type data), are generated from multiple heterogeneous sources. How to optimally combine knowledge from ...

متن کامل

A Co-training Approach for Multi-view Spectral Clustering

We propose a spectral clustering algorithm for the multi-view setting where we have access to multiple views of the data, each of which can be independently used for clustering. Our spectral clustering algorithm has a flavor of co-training, which is already a widely used idea in semi-supervised learning. We work on the assumption that the true underlying clustering would assign a point to the s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Image Processing

سال: 2019

ISSN: 1057-7149,1941-0042

DOI: 10.1109/tip.2019.2916740